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Abstract

This paper presents an efficient algorithm for solving a class of
quadratic integer programming problems. These problems include discrete
versions of the quadratic placement problem and the squared Euclidean
distance problem. The algorithm solves a finite sequence of minimum cut
problems, or equivalently maximum flow problems, on a graph with n + 2

vertices where n is the number of variables in the problem.




Consider an integer program of the form

n n
minimize f£(Y) = 321 kzlqjk Y4k + Z bj 3
(PO)
s.t. yj = Lj, £j+1, e uj Jemile e ey B

where zj and u, are non-negative integers, qjk = <0 for j # k and

3 Ui Yk

Z q >0 for j=1, 2, ..., n. We will develop an algorithm which solves (P0)
1'1
n
by solving a sequence of not more than Z (u, - zj) minimum cut problems on a

=1
graph with n+2 vertices.
Problems which are of the form (P0) include
discrete versions of the squared Euclidean distance location problem (White

[6]) and the n-dimensional quadratic placement problem (Hall (1]). The dis-

crete squared Euclidean distance location problem has the form

2 i
min Z X vy L(zmg) " + (2-2)7] + Z Zw a) + (zj ai) ]

j-l k-l j-l ksl
1 L] L 1
s.t. %oy Bl ey W, Aand 2, ® Q- Rl s
e M e e s e dachidden
] ]
where (gj, zj) is the location of new facility j, (ai, ai) is the location of
old facility i, and v& and WBi are non-negative weights normally corresponding

to the number of trips between facilities. This problem decomposes into a

]
problem in z and a problem in z both of which are easily put into the form (PO).
The n-dimensional quadratic placement problem can be considered as a variant

of the squared Euclidean distance problem.

The underlying ideas for the algorithm to be presented here are as

e s
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follows. We note from Picard and Ratliff [2] that a restricted version of
(P0), where each yj can take on only its lower bound Zj or its lower

bound plus one, can be efficiently solved as a minimum cut problem on a graph.
(This will be illustrated later.) If Y* is the optimum solution to this re-
stricted problem, we will show that there exists an optimum solution Y° to
the original problem with y§ z_y; for j=1, 2, ..., n. Hence for each j with
yg = 2j+1 we can increase the lower bound on yj by one. We can then repeat
this process until we obtain an optimum solution Y* with each yg equal to its
lower bound. We will show that such a solution is optimum to the original

problem. Before formalizing the algorithm, we will develop the necessary

theoretical underpinning.

Theoretical Results

Consider the problem

minimize f(X)

(p1)
s.t. xj 0 o [ us for J =1, 2, couy M
where f(+*) is as defined for (PO) and uj is a nonnegative integer for
j=1, 2, ..., n. Also consider the related problem
minimize f(X)
(p2)

s.t. agorl for g s 1; 2, +ivs N

o
where f(+) is as defined for (PO).

Lemma 1: If X* is an optimum solution to (P2), then there is an optimum solu-

tion X' to (P1) with x! > x*,

'
b 3
Proof of Lemma 1: Let X° be any optimum solution to (Pl) and let R = {jlxg =1

and x° = 0}. Define the vectors X' and X" as

3




14if j e R

3 x3 otherwise.
0 if j e R
x" =
i xg otherwise.

Noting that for each jeR the variables xg = 1 and xj = 0 we have

f(X*) - £(X") = q,, +2. q * 4 b, <0 (R1)
jZR kgR % jER k§R ik "k jZR J

since X" is feasible to (P2) and X* is optimum to (P2). Also noting that for

each jeR the variables x; =0 and x! = 1 we have

3 3

f(x') -£(x) = §J Yag. +2F JTq. =2+ Ib (R2)
JeR ker J*  jer ke ¥ E jer 3

Now since qjk < 0 and for k¢R we have xs Z_xg it follows that each term of

(R2) is less than or equal to the corresponding term of (Rl). Hence,

f(X') < £(X°). Since X' is feasible to (P1) and has x5 Z_xg the result follows.
Q.E.D.

Lemma 2: If X* is an optimum solution to (P2) and xj = 0 for j=1, 2, ..., n,

then X* is optimum to (Pl).

Proof of Lemma 2: Assume that there exists an X° feasible to (Pl) with

f(X°) < 0. (Note that £(X*) = 0.)

Define the vectors X' and X" as

14if x2 > 1
x' = e
3 0 1f x3 = 0
x; = xs - xj for J =1, 2, ...y N,
Then
3.3 )
f(xb) - f(xl + xll) = q (x'+,x")( '+ ll) + b (x|+x")
P i L . A
n n
= £(X') + £(X") +2) qukxj <0 (R3)

j=1 k=1




Since X' is feasible to (P2) and X* is optimum to (P2) with f(X*) = 0, it

must be the case that f(X') > 0.

n n
Now consider the term 2 ) ] q k Xy ¥i. From the assumption that
j=1 k=1 L. B
n n
Yaq, >0we have ) q,, x! >0 if x! = 1. In addition, whenever x! = 0
=1 jk— k=1 jk i (8 h| h|

n n
" oo ron
we have xj 0. Hence, ijl kzlqjk xj x > 0. Therefore, from (R3) it follows

that £(X") < O.

If we repeat this process, each time setting X° = X", after a finite num-
ber of repetitions we must obtain an X" with £f(X") < 0 and x; =0 or 1. This
contradicts the assumption that X* is optimum to (P2).

Q.E.D.

We need to make one further observation before stating an algorithm.

If a problem is in the form (PO), we can make the change of variables

xj = yJ = zj to obtain
n n n n
min f(X) +L = 321 kzlqjk X%, + jlej(bj + zkzlqujk)
n n
AR
s.t. xg =0, 1, cony ugmty

Since the constant term does not affect the optimization, (P3) is of the same
form as (P1). Note that the only coefficients of (P3) which differ from (PO)

are those for the linear terms.

Algorithm

(1) Given a problem of the form (P0O), transform it via the change of variables

X

3 = yj - 9.1 to the form (Pl).




(2) Solve the corresponding problem (P2) as a minimum cut problem on a graph
(e.g., Picard and Ratliff [4]) to obtain the solution X*. Let
S = {jlxg =1}.

(3) If X= ¢ stop. It follows from Lemma 2 and the transformation used to
obtain (P3) that x, = ¢, for j =1, 2, ..., n is optimum to (PO).

¥ 4

(4) If S # ¢ set zj = 23 + 1 for all j € S. It follows from Lemma 1 and

the transformation used to obtain (P3) that the new £, is a valid lower

3

bound for yj in (PO). For each j such that £, = u, permanently set

j b

yj = zj. Go to step (1).

Since at least one lower bound is increased by one at each iteration, the

n
algorithm terminates after at most z (uj-lj) iterations.
j=1

Example Problem

In order to demonstrate the steps of the algorithm, consider the following

example problem:
yl -6

minimize [yl, y2, }'3] )'2 + [y1) st Y3] -8 (Pl‘)

Y3 -4
s.t. v, = 0, 1, 2, 3 ¥y = Q5 1, 2 Y3 " 0 1y 2, 35 %
Note that this problem is already in the form (Pl), so no initial change of

variables is required.
In order to solve the corresponding problem (P2) we can define an undirected

graph with vertices, 0, 1, 2, ..., n+l and capacities defined as follows

(Picard and Ratliff [5]).




T L M e T T T

€13 T Y4

n
= max{ Z q,, + b

c , 0}
jontl k=1 jk h|
n
coj = max{-kzlqjk - bj’ 0}

If (S, S) is a minimum capacity cut in the graph separating node 0 and node n+l

withOe Sand ntl € S, an optimum solution to (P2) is x, = 1 for j € S and

h|
x, =0 for j € S.

B
For this example the graph is as shown in Figure 1 where the dashed lined
! indicates a minimum cut. The optimum solution to (P2) is x, = 1; x, = 1, and
Xy = 0. From step 4 of the algorithm we set 21 =1, L, = I, 2y = 0.

Performing the change of variables (P3) on (PO) with the new lower bounds

) yields the new linear term coefficients [-2, O, -16]T. The constant term is
ignored and the remaining coefficients are the same as in (P4). The new graph
and minimum cut are shown in Figure 2. An optimum solution to the new problem

(P2) is x, = 1, x, = 1, and x, = 1. From step 4 we get &, =2, %, = 2, and
1 2 3 2

1
25 = 1.

Again performing the change of variables (P3) on (PO) with the new lower
bounds yields the new linear term coefficients [-2, O, 12]T. The new graph
and minimum cut are shown in Figure 3. This time the optimum solution to (P2)

is X = o, x, = 0, and Xy = 0. Hence, an optimum solution to (P0) is - L, = 2,

1

% Y, = 12 = 2, and y3 = 23 = 1.

Rl
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Figure 1: Graph for example iteration one.

min cut

Figure 2: Graph for example iteration two.

min cut

Figure 3: Graph for example iteration three.
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Constrained Problems

Constraints of the form yj ot o djk for djk integer can be incorporated
into (P0) very simply by using a device developed in Hammer, Rosenberg, and

Rudeanu [2], and discussed in Hammer and Rudeanu [3, p. 123]. For each con-

2
djk)

straint of this form we add to f(y) in (PO) the term (S+-S—4-1)(yj-yk_
where S+ and S are the sums of the positive and negative coefficients of f(y),
respectively. If the optimum solution to the new problem is feasible to the
constraints, it is optimum to the original problem. If the optimum solution
to the new problem is not feasible to the constraints, then there does not exist
a feasible solution to the original problem. Note that (S+ - S +1) is posi-
tive, hence adding terms of the form (S+ -s + 1)(yj o N djk)z to f(y)
yields a function with the same form as the original f(y).

By including constraints of this form in the squared Euclidean location
problem, we are able to specify the distance between pairs of facilities. This
device can be used to model the location of line segments (rectangles for the

two dimensional problem) by considering each end of the segment as a point to

be located and then constraining the distance between these points to be the

length of the segment. This is of particular interest in modeling layout

problems.

Conclusions and Extensions

The algorithm presented here can be considered as a generalizatior of the
algorithm in Picard and Ratliff [5] for the rectilinear distance location pro-
blem. The basic difference is that additional special structure in the recti-
linear problem (i.e., each cut problem solved partitions the variables into
two sets and each set can be solved as an independent problem) allows a more

efficient algorithm which requires at most, m-1, where m is the number of old

facilities, minimum cut problems on a graph with n+2 vertices.




There are several possible generalizations for the procedure. First, the
form (PO) applies to a somewhat more general problem than the squared Euclidean
distance location problem and hence, may have other applications in a location
context. Second, Lemma 1 requires only that q1j <0 for 1 # j. In additionm,
the lemma extends directly to an analogous result related to the upper bounds.

n
Therefore, even if the assumption Z Uk > 0 is not satisfied, the result may
k=1

be used to increase the variable lower bounds and decrease the variable upper
bounds. Finally, problem (Pl) where qjj =0for j=1, 2, ..., n and q1j <0

for i # j can be solved as a single cut problem on an expanded graph. One can

ul

simply replace each variable x, by with x,, = 0 or 1. The resulting

e e ik

problem is of the form (P2) and can therefore be solved as a single minimum cut

n
problem on a graph with Z uj + 2 nodes.
J=1
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